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Rotational stabilization of n=1 resistive wall modes in ITER advanced scenarios [K. Ikeda, Nucl.
Fusion 47 (2007)] is investigated, where n is the toroidal mode number. In particular, we present
numerical results for the ITER strongly reversed shear case, in comparison to the weakly reversed
shear case. The rotation frequency is assumed to be modestly low. Our investigation employs the
adaptive eigenfunction independent solution-kinetic (AEGIS-K) code [L. J. Zheng et al., “AEGIS-K
code for linear kinetic analysis of toroidally axisymmetric plasma stability,” J. Comput. Phys. (to be
published)], which provides a fully kinetic (nonhybrid) and self-consistent (nonperturbative)
description. AEGIS-K includes wave-particle resonances, shear Alfvén continuum damping, trapped
particle effects, and parallel electric effects, but not finite Larmor radius effects. In the case without
rotation and kinetic effects included, we find that the strongly reversed shear configuration is more
favorable for perfectly conducting wall stabilization of resistive wall modes, in that it has a higher
conducting wall beta limit than the weakly reversed shear case. With sufficient rotation, the strongly
reversed shear case can also achieve a higher beta limit for completely suppressing the resistive wall
modes. However, the marginal rotation frequency required for complete resistive wall mode
stabilization in the strongly reversed shear case is about twice as high as that required for the weakly

reversed shear case. © 2010 American Institute of Physics. [doi:10.1063/1.3318267]

I. INTRODUCTION

One of the important goals of ITER (Ref. 1) is to dem-
onstrate the so-called advanced scenarios: i.e., the reactor
scale steady-state operation for tokamaks. However, such
steady-state high beta fusion plasmas with reversed magnetic
shear are likely to be unstable to long-wavelength external
kink modes. The external kink modes can in principle be
stabilized by a perfectly conducting wall, allowing the stable
beta value to increase above the no-wall stability limit. How-
ever, if the wall has finite conductivity, the external kink
modes are converted to the so-called resistive wall modes
(RWMs), which grow slowly on the resistive wall time.”
Therefore, the stability of RWMs becomes a major concern
for ITER advanced scenarios.’

Considerable theoretical and numerical efforts have been
made to determine the stabilization regimes for RWMs. It
has been shown previously that the kinetic and Alfvén reso-
nances can play significant roles in stabilizing the RWMs.*”
However, a satisfactory systematic investigation of RWMs
remains a challenging issue. On one hand, one needs to for-
mulate the problem in a nonperturbed and nonkinetic-fluid-
hybrid manner theoretically. On the other hand, one needs to
develop a numerical scheme with high radial resolution in
order to study the continuum damping and its coupling to the
kinetic one computationally. The present paper reports our
effort in resolving this challenging issue.

On the theoretical side, we have extended the conven-
tional gyrokinetic theory so that it can maintain consistency
of ordering and recover full magnetohydrodynamics (MHD).
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This was reported in Ref. 8. The success in recovering full
MHD with our newly derived gyrokinetic theory now allows
the possibility to consistently study the stability of RWMs in
a nonhybrid manner. Kinetic effects have also been investi-
gated with so-called hybrid approach. When finite Larmor
radius (FLR) effects are neglected, our nonhybrid model
should be equivalent to properly formulated hybrid ap-
proaches. Our approach, moreover, has the advantage of sys-
tematically including all relevant kinetic effects.

On the numerical side, we have implemented a nonper-
turbative formalism and developed a radially adaptive nu-
merical scheme by extending our MHD adaptive eigenfunc-
tion independent solution (AEGIS) shooting code (Ref. 9) to
a kinetic version AEGIS-kinetic (AEGIS-K).'” The radially
adaptive numerical scheme seems to be unavoidable. One
can estimate the requirement for the number of radial grid
points in a grid-based numerical scheme, using an ideal
MHD code such as GaTo.'! In general, GATO works with 300
radial grid points for a reasonable numerical convergence. In
a kinetic description, however, the matrices become complex
and non-Hermitian. It is hard to have good numerical con-
vergence with 300 radial grid points. To resolve the singular
layer physics in a kinetic description, one needs more than
double the size of 300 radial grid points. This sets a hard
obstacle to overcome for the grid-based method. In contrast,
increasing the radial resolution in our AEGIS-K numerical
scheme does not lead to an increase in matrix size. Due to its
adaptive numerical scheme, AEGIS-K does not have the ra-
dial convergence problem. This shows the numerical advan-
tage of the AEGIS-K formalism.

To make this challenging issue tractable, we limit our-
selves in this work to a consideration of the case with mod-
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estly low rotation frequency. In this frequency regime, the
FLR effects can be neglected, especially the precessional
drift resonance effect.” Low rotation case is of interest for
ITER.

The paper is arranged as follows. In Sec. II, the
AEGIS-K code and its theoretical formalism are outlined. In
Sec. III, the numerical results are presented. In Sec. IV, we
give discussion and conclusions.

Il. AEGIS-K CODE AND ITS THEORETICAL
FORMALISM

In order to have a nonhybrid numerical analysis of MHD
modes, one needs to develop a kinetic theory that recovers
MHD-like equation structure. As described in detail in Ref.
8, we found that conventional gyrokinetics can only achieve
a partial recovery of the MHD-like equation structure. There
are four main reasons for conventional gyrokinetic theory to
lose the MHD fluid root: (1) the equilibrium distribution
function has not been solved to a sufficient order. Note that
the Pfirsch—Schliiter current results from the equilibrium dis-
tribution function of the first order, as shown in the neoclas-
sical transport theory. Therefore, the conventional approach
of only using the lowest order equilibrium distribution func-
tion (e.g., Maxwellian distribution function) leads the
Pfirsch—Schliiter current effect not to be included. (2) Solv-
ing only the gyrophase-independent part of the gyrokinetic
equation also contributes to the exclusion of the Pfirsch—
Schliiter current effect. This is because the Pfirsch—Schliiter
current effect is present in the term v X 6B-V_ F, which de-
pends on the gyrophase. Here, v is the particle velocity, 6B
denotes the perturbed magnetic field, and F is the equilib-
rium distribution function. We have used boldface to repre-
sent vectors. One needs to solve for full Fourier harmonics of
the perturbed distribution function in gyrophase in order to
retain the Pfirsch—Schliiter current effect. (3) Coupling be-
tween the gyrophase-independent and dependent parts of the
distribution function through the term «;ddf/da has not
been taken into account. Here, f is the perturbed distribu-
tion function and « is the gyrophase, with the subscript “1”
denoting the first order in the small Larmor radius expansion
and the dot representing the time derivative along the unper-
turbed particle orbit. (4) A correction to the next-order gy-
rophase expression needs to be made: &;=v-Va+(1/Q)v
X e, V. Only with corrections (1) and (2) included can the
J X 6B term, where J is the equilibrium current, be recovered
and the MHD equations perpendicular to the magnetic field
be fully reproduced. Also, only with corrections (3) and (4)
can the parallel MHD equation of motion be retrieved in the
proper limit.

Inclusion of corrections (1)—(4) also results in the recov-
ery of the FLR effects that are missing in the conventional
gyrokinetic formalism. The usual description of the FLR ef-
fects through the Bessel functions J, and J; is incomplete.
From Ref. 8, one can see that the FLR effects even in the
second order is much more complicated than those given by
Jo and J,. Therefore, in pursuing the kinetic analysis of the
stability of MHD modes, we will advance our numerical
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work step by step. In our current work we will neglect the
FLR effects by choosing a suitable rotation frequency
regime.

We therefore focus on the case with modestly low rota-
tion frequency, smaller than the ion transit frequency but
larger than the ion diamagnetic frequency w,;. In this limit,
the basic set of equations is composed of the perpendicular
Ampére’s law

—p,*E=S] XB+J X SB-V6P,
_VLdeU(mpMB)ﬁfOi(X)v (1)

the gyrophase-independent part of the gyrokinetic equation

vy - Vf,(X) — id5fp,(X)

m m
= z'<:)7f-’p,BFOVi £+ ia?é(MB ~vi)FoK- &

A Le,
- lw?Fo&o, (2)

and the quasineutrality condition

1 7,1
- —<— | dvofy. 3
1l +Z71Ze;n 0o ®)

Sp =

Here, £ is the perpendicular field line displacement, B de-
notes the equilibrium magnetic field, SB=V X §XB, 8J=V
X 6B, P represents the equilibrium pressure, 6P.=—§-VP is
the perturbed pressure of convective part, p,, is the mass
density, m,, denotes the mass, e; is the ion charge, Z is the
charge number, n is the ion density, ,u,=v2l/ 2B is the mag-
netic moment, 7 represents the temperature, 7=7;/T, with
subscripts i and e representing, respectively, the ion and elec-
tron species, & represents the field line curvature, d¢ speci-
fies the parallel electric field effect, of,; denotes the gy-
rophase averaged distribution function for ion spices, Fj is
the Maxwellian distribution function, and the subscripts L
and |l represent, respectively, the perpendicular and the par-
allel components of the equilibrium magnetic field line. Due
to the low mode frequency, we have assumed the electron
response to be adiabatic. Here, we note that, without the
parallel electric field effect [the last term on the right hand
side of Eq. (2)], Eq. (2) agrees with the nongyrokinetic for-
mulation in Ref. 12 derived by using the method of integra-
tion along the unperturbed particle orbit.

In our ordering scheme, the rotation frequency is much
lower than the ion acoustic frequency. We can then include
the rotational effects through a Doppler shift in our formal-
ism, i.e., by replacing the mode frequency w with O=w
+nQ) in Egs. (1)—(3), where Q(¢) is the rotation frequency
and ¢ is the poloidal magnetic flux. In actuality, rotation
effects enter into the problem in three categories—that is, not
only through the Doppler shift but also via centrifugal force
and Coriolis force. For the case when the rotation speed is
much less than the ion thermal speed, however, it can be
shown that the rotational effects of centrifugal force and
Coriolis force are negligibly small.”? Consequently, we can
keep only the rotational effect from the Doppler shift. Note
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FIG. 1. Cross section of the ITER advanced tokamak configuration with
strongly reversed shear. The poloidal coordinate shown here is the Hamada
coordinate. The packed radial grids for output of eigenfunctions are shown
in diluted grid density.

that the effect of the radial dependence of the Doppler shift
(or the rotation shear effect) has been included in our formu-
lation (see Ref. 10).

In our set of equations, Egs. (1)—(3), the wave-particle
resonances, the shear Alfvén continuum damping, the
trapped particle effect, and the parallel electric effects are all
taken into account. The precessional drift resonance as stud-
ied in Ref. 7 has not been included in our consideration. We
postpone this work for future investigation, since it is a more
complex target. Considering the precessional drift resonance
alone is insufficient for ordering consistency. First, since
(wy)! w,; is of order of the inverse aspect ratio a/R, inclusion
of the {w,) effect also needs to take into account the w,;
effect together with the FLR effects of order k> p?, which, as
pointed out in Ref. 8, is much more complicated than that
predicted in the conventional theory. Here, k, is the perpen-
dicular wave number and p; is the ion gyroradius. Second,
one also needs to include finite orbit size effects through the
magnetic drift velocity in the minor radius direction in con-
sidering the precessional drift effect.

To implement our newly derived set of equations, Egs.
(1)-(3), we extend our existing AEGIS code’ to the kinetic
AEGIS-K code.'® In our formalism, Fourier decomposition
is employed in the poloidal direction. In the radial direction,
decomposition using the independent solutions is used. The
independent solutions are then obtained by adaptive numeri-
cal shooting. There is a difficulty to apply this method for
global eigenmode calculation, related to the numerical pollu-
tion of the large solution associated with independent solu-
tions at the singular surfaces. We developed a multiple-
region matching method to overcome this difficulty. In ideal
MHD stability calculations, we have demonstrated the suc-
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b

FIG. 2. Typical safety factor profiles for strongly (solid) and weakly
(dashed) reversed shear cases, respectively.

cess of this method in the AEGIS formalism.” We also find
that this method works equally well for the kinetic
problem.10 Since the AEGIS formalism is based on the adap-
tive numerical scheme, we are able to resolve the coupling
between the kinetic and the shear Alfvén resonances.

lll. NUMERICAL RESULTS

We used our AEGIS-K code to study n=1 RWMs in
ITER advanced tokamak scenarios, where n is the toroidal
mode number. We focused on the strongly reversed shear
case in this paper, with comparison made to the weakly re-
versed shear case that we investigated previously in Ref. 14.
The numerical equilibrium was generated by the TOQ code
(an MHD equilibrium code developed at General Atomics,
San Diego, CA)." The typical parameters for strongly re-
versed shear case (for By=3.4) were as follows: gy=4.67,
qa=5.25, Gin=2.36, q95=4.26, elongation «,=1.8, and trian-
gularity 6,=0.48. Here, q¢, ¢4, qmin» and qos are, respectively,
the safety factor values at the magnetic axis, the plasma
edge, the ¢ minimum, and the 95% radial flux surface. The
rotation profile is specified as Q(1-¢?). We assume a con-
formal wall in the present calculation and assume the equi-
librium to be up-down symmetric. A typical plasma cross
section is given in Fig. 1. The typical safety factor profiles
both for strongly and weakly reversed shear cases are shown
in Fig. 2. As in Ref. 3, we define the strongly reversed shear
case as the case with gg—@qpmin>2.

We first present the RWM stability diagram for the cases
without kinetic and rotation effects as a baseline reference
for the subsequent kinetic analyses. We use the MHD code
AEGIS to determine this diagram. The AEGIS code is in
complete agreement with GATO (Ref. 11) for ideal MHD
computations.8 The solid and dashed curves in Fig. 3 show
the ideal MHD stability conditions for the strongly and
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FIG. 3. Critical wall position b for ideal MHD RWMs vs beta normal Sy
without rotation for strongly (solid) and weakly (dashed) reversed shear
cases.

weakly reversed shear cases. The stability conditions
are given in terms of the critical wall position b (normalized
by the minor radius) versus the beta normal value
By=B(I/aB,)~", where S is the ratio of the plasma energy to
the magnetic energy, / is the tokamak toroidal current, a is
the minor radius, and B, denotes the magnetic field at the
magnetic axis. The dashed curve for the weakly reversed
shear case is reproduced from Ref. 14. Figure 3 shows that
the strongly reversed shear case has higher critical wall po-
sition than the weakly reversed shear case. This indicates that
strongly reversed shear is favorable for perfectly conducting
wall stabilization. In particular, for ITER wall position
b=1.5, the critical beta value for the weakly reversed shear
case is By=4.48, whereas for the weakly reversed shear case
it is By=3.94. This indicates that strongly reversed shear
improves the confinement considerably for perfectly con-
ducting wall stabilization of RWMs. The unstable regions are
above the curves. As usual, the unstable RWMs are recov-
ered in the perfectly conducting wall stabilization region.
Nevertheless, we note that the no-wall limits do not vary
much between strongly and weakly reversed shear cases.
Based on our equilibrium cases explored so far, we are still
not certain whether this is just a coincidence. This will be
further investigated in the future. A typical ideal MHD eigen-
mode for the strongly reversed shear case is shown in Fig. 4.

We used the AEGIS-K code to study the effects of rota-
tion and kinetic effects on the RWMs in the ITER strongly
reversed shear case. We find that RWMs can be stabilized by
rotation and kinetic effects. A typical unstable kinetic eigen-
mode in the strongly reversed shear case is given in Fig. 5
for beta normal By=3.4 and normalized rotation frequency
0 =0.015. Note that the rotation frequency () is normalized
by the Alfvén speed B2/ (uop,,R>g>) at the magnetic axis

with ¢ included. Here, R is the major radius and w, is the

Phys. Plasmas 17, 056104 (2010)

.32

30
.28
.26
.24
.22

.20

5112 .16

.08

.06

.04

.02

FIG. 4. Fourier components of the radial field line displacement vs radial
coordinate ¢ for typical unstable RWMs without rotation, as computed by
AEGIS for the strongly reversed shear case with beta normal By=3.4. The
poloidal mode numbers are tagged to the corresponding curves.

magnetic permeability. One of the advantages of the
AEGIS-K code is that it preserves the ideal MHD roots. This
can be seen from a comparison between Fig. 4 and Fig. 5(a).

Using AEGIS-K, we can study the dependence of RWM
stability on the beta value. For this purpose, we consider a
series of numerical equilibria with beta normal values rang-
ing from the no-wall limit By “*'=2.95 to the ideal-wall
limit B “4'=4.48 for fixed wall position b=1.5. Figure 6
shows the RWM growth rate versus beta normal for a given
wall position b=1.5 for the strongly reversed shear case for
various rotation frequencies. The left and right vertical dot-
ted lines in Fig. 6 represent the no-wall and perfectly con-
ducting wall beta limits, respectively. RWMs are unstable for
the beta value between these two dotted lines for the case
without rotation and kinetic effects included. The case of
0=0.03 was also computed, and full stabilization was ob-
tained with this rotation frequency. Figure 6 shows that the
growth rate generally decreases as the rotation frequency in-
creases. This shows that rotation gives rise to stabilization of
RWMs in the kinetic description.

Similar to the weakly reversed shear case reported in
Ref. 14, we find that the rotational and Kinetic stabilization
first appears near the ideal-wall stability limit as the rotation
frequency increases. One can explain this behavior with the
energy picture introduced in Ref. 5. Expressed in terms of
no-wall and ideal-wall energy integrals 6W,, and 5Wb,2 the
RWM growth rate can be written as follows:

SW., W, + SW.,6W,
oW, + oW,

Y~ (4)
where the superscripts r and i represent the real and imagi-
nary parts, respectively. Without rotation and kinetic effects
(6W.,=56W, =0), the RWM growth rate tends to infinity at the
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FIG. 5. Real (a) and imaginary (b) parts of the Fourier components of the radial field line displacement vs radial coordinate i for an unstable RWM in the
presence of rotation and kinetic effects, with equilibrium parameters: By=3.4, (1=0.015, and b=1.5. The poloidal mode numbers are tagged to the corre-

sponding curves.

ideal-wall limit sW}, =0 (dashed curve in Fig. 6). In the pres-
ence of rotation and kinetic effects (5W;5W2¢0), the nu-
merator of Eq. (4) shows that sW} =0 is also the point that is
most easily to be stabilized by the rotation and kinetic effects
through the resonance-induced imaginary part of the energy
5W;5W2. This explanation applies only for the cases with
sufficiently high rotation. If rotation is too low, the kinetic
stabilization effects are not strong enough to overcome the
RWM development. Consequently, the large RWM growth
rate causes the thermal particles to become nonresonant with
the modes, so that no stabilization window opens up near the
ideal-wall limit. In Figs. 6 and 7, we have not plotted curves
with insufficient rotation, because their behavior is similar to
the curve with zero rotation.

To compare with the weakly reversed shear case, we
reproduce the figure for the RWM growth rate versus beta
normal given in Fig. 7 of Ref. 14. In contrast to Ref. 14, here
we use the actual beta normal as the horizontal coordinate,
instead of the beta parameter Cg. We first point out that our
normalization of the rotation frequency by the Alfvén fre-
quency at the magnetic axis includes the safety factor at the
magnetic axis, ¢. As shown in Fig. 2, the safety factor at the
magnetic axis for the strongly reversed shear case is larger
than that for the weakly reversed shear case. Therefore, we
need to exclude the g, normalization factor to compare the
results in Figs. 6 and 7. As reported above, full stabilization
of the RWM in the strongly reversed shear case occurs for
0=0.03. Excluding the g, factor, we find that this value
reduces to 0.006. As shown in Ref. 14, full stabilization of
the RWM in the weakly reversed shear case occurs for
0 =0.0075. Excluding the g, factor, we find that this value
becomes 0.003. This shows that the rotation frequency re-
quired for full stabilization in the strongly reversed shear
case is about twice that in the weakly reversed shear case.

Nevertheless, note that the achievable beta value with full
rotation stabilization in the strongly reversed shear case
(By=4.48) is considerably larger than that in the weakly re-
versed shear case. From a comparison between the eigen-
modes for the strongly reversed shear case in Fig. 5 and
those for the weakly reversed shear case in Ref. 14, one can
see that there are two additional resonance surfaces (m=3
and 4) on the reversed shear side in the strongly reversed
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FIG. 6. RWM growth rate normalized to resistive wall time vs beta normal
for the strongly reversed shear case. The dashed curve represents the growth
rate without plasma rotation and kinetic effects. The dotted ({2=0.01), dot-
dashed (Q2=0.015), dot-dot-dashed (£2=0.02), and solid (£2=0.025) curves
are growth rates with plasma rotation and kinetic effects included.
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(Q2=0.003), dot-dot-dashed (£2=0.005), and solid (2=0.007) curves are
growth rates with plasma rotation and kinetic effects included.

shear case. It appears that the Alfvén and kinetic resonance
effects on the reversed shear side are not as strong as those
on the normal shear side for stabilization. Possibly this is due
to the effect of reversed shear, as noted in the ballooning
mode theory.16 Reversed shear favors stabilization, as com-
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FIG. 8. RWM growth rate normalized to resistive wall time vs beta normal
for the strongly reversed shear case. The dashed curve represents the growth
rate without plasma rotation and kinetic effects. The dot-dashed (2=0.3),
dot-dot-dashed (£2=0.5), dotted (2=0.7), and solid (2=0.9) curves are
growth rates with Alfvén continuum damping taken into account. Full sta-
bilization is found for 1=1.1. The kinetic resonances are excluded in this
figure.
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FIG. 9. RWM growth rate normalized to resistive wall time vs beta normal
for the weakly reversed shear case. The dashed curve represents the growth
rate without plasma rotation and kinetic effects. The dot-dashed (Q2=0.1),
dot-dot-dashed (2=0.3), and solid (2=0.9) curves are growth rates with
Alfvén continuum damping taken into account. Full stabilization is found
for 1=0.7. The kinetic resonances are excluded in this figure.

pared to the normal shear case. This might make a difference
between the resonances on the normal shear side and those
on the reversed shear side. Verification of this hypothesis
needs further analytical and numerical investigation.

To exclude the kinetic effects, we plot in Figs. 8 and 9
the dependence of the RWM growth rate versus the beta
normal, respectively, for strongly and weakly reversed shear
cases, with purely Alfvén continuum damping taken into ac-
count. Figures 8 and 9 are made using the code in Ref. 6.
Therefore, the so-called apparent mass effect has not been
taken into account. Using the cylinder estimate, the MHD
apparent mass enhancement is about 1+2¢%. Therefore, the
rotation frequency in Figs. 8 and 9 should be scaled down by
a factor 1/(1+2¢%)"2. Using g=4 for estimate, this factor is
about 0.24. From comparison between Figs. 6 and 8 for
strongly rotation case and between Figs. 7 and 9 for weakly
rotation case, one can see that the rotation stabilization is
enhanced significantly when the kinetic effects are taken into
account. The kinetic stabilization in the weakly reversed
shear case is more significant than in the strongly reversed
shear case, as compared to purely Alfvén resonance effect.

IV. DISCUSSION AND CONCLUSIONS

In this paper we investigated the stability of n=1 RWMs
in ITER advanced scenarios with strongly reversed shear, in
comparison to the weakly reversed shear case that we inves-
tigated previously. Our investigation was based on the MHD
code AEGIS and the kinetic version AEGIS-K. We devel-
oped AEGIS-K based on first principles, namely, the Vlasov
and Maxwell equations with suitable ordering scheme. This
type of analysis is enabled by our newly derived gyrokinetic
formalism in Ref. 8, which recovers MHD in the proper limit
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and retrieves missing FLR effects. This feature leads
AEGIS-K code to be able to provide a fully kinetic (nonhy-
brid) and self-consistent (nonperturbative) description of the
RWM stability. In the AEGIS-K code, wave-particle reso-
nances, shear Alfvén continuum damping, trapped particle
effects, and parallel electric effects are all taken into account.
In the calculation reported in the present paper, FLR effects
have not been taken into consideration.

We found that, without rotation and kinetic effects taken
into account, the strongly reversed shear case is more stable
than the weakly reversed shear case. The beta limit with a
perfectly conducting wall for the strongly reversed shear case
is higher than that for the weakly reversed shear case. With
rotation and kinetic effects taken into consideration, the nor-
malized rotation frequency for full rotation stabilization of
RWMs in the strongly reversed shear case is ¢y{2=0.006.
This is about twice as high as that for the weakly reversed
shear case reported in Ref. 14, for which the normalized
rotation frequency is ¢,{2=0.003. Nevertheless, it should be
noted that the beta value for full stabilization in the strongly
reversed shear case (By=4.48) is larger than that for the
weakly reversed shear case (8y=3.84). Similar to the weakly
reversed shear case, we found that the stability window
opens first at the conducting wall limit.

In our present investigation, the FLR effects, especially
the precessional drift,7 have been neglected, because we con-
sidered only the case of modestly low rotation frequency.
Consequently, these results are applicable only to the case
with rotation frequency larger than the ion diamagnetic drift
frequency, in which case the resonance effects due to the ion
precessional drift are excluded. Although the lower range of
our parameter domain in Fig. 6 might approach or touch the
ion diamagnetic drift frequency, it does not change our dem-
onstration of full rotation stabilization of RWMs above the
diamagnetic frequency. In ITER, beam-driven rotation is ex-
pected to small, due to a relatively low beam power. Note,
however, that there is some uncertainty about the actual
value of the rotation in ITER, since so-called spontaneous
rotation may occur. The Alcator C-Mod (Ref. 17) experimen-
tal results indicate that the spontaneous rotation speed could
be about 10% of the ion thermal spe:ed.18 This rotation fre-
quency is not small. Therefore, the rotation stabilization win-
dow found in our paper could be of interest for ITER. The
full stabilization rotation frequency for ITER found in this
paper is roughly the same as that observed recently in DIII-D
(Ref. 19) experiments.20

The case with even lower rotation frequency, where the
precessional drift resonance occurs, ! is important for fu-
ture study. The theoretical understanding of the precessional
drift resonance effect on RWM stabilization and its experi-
mental validation require more elaborate effort. Theoreti-
cally, as we found with our newly developed gyrokinetic
theory,8 FLR effects have been oversimplified in previous
studies. Furthermore, the MARS-K code has not taken into
account the finite orbit size and the parallel electric field
effects, for example.22 Numerically, Ref. 21 is based on a
perturbative method, whereas the nonperturbative hybrid cal-
culations with the MARS-K code show that the perturbative
and nonperturbative results differ dramatically.22 In addition,
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the numerical scheme and code validation are also a concern.
Due to the complexity of this problem, one could easily lose
the MHD benchmark point in the nonperturbative calcula-
tions and no longer be able to identify the MHD eigenmode
trace as computed from existing MHD codes such as GATO
and AEGIS. We plan to use the current results as a starting
benchmark point for our subsequent investigations. Compari-
son of our MHD (Fig. 4) and kinetic (Fig. 5) eigenmodes
shows that the MHD trace has been retained. The frequency
domain we have here investigated is easier to benchmark
(with the use of the Z-function). This is another reason why
we are advancing this research slowly and deliberately.

The other important feature of AEGIS-K is its adaptive
nature. The eigenfunction in Fig. 5 shows that the radial
resolution is a critical issue for kinetic computation. It is
challenging for radial-grid-based numerical schemes. In most
cases, the radial grid density for the output can run as high as
800 points with packing at the resonance surfaces. The ma-
trix size in the AEGIS-K numerical scheme, however, is de-
termined by the product of the number of poloidal Fourier
components and the number of radial integration regions.
The latter is approximately the same as the number of mode
rational surfaces. Here, we note that, although the number of
resonance surfaces doubled due to the splitting of the Alfvén
resonance surfaces, the singularity weakens from nearly 1/x°
to 1/(x—C). Increasing the radial resolution is not accompa-
nied by increasing the matrix size in AEGIS-K. Hence, the
AEGIS-K code has the capability to resolve singular layer
behavior in the presence of kinetic and shear Alfvén reso-
nances. Usual grid based codes have difficulty meeting this
requirement for high- resolution computation.

In the future, we also plan to extend the AEGIS-K code
to include the precession drift resonance together with the
FLR effects.
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